PISCINE OBJECT
Module 02 - UML

Summary: This document will introduce you to the basis of Universal Modeling
Langage.

Version: 1.00




Contents

11

111

1A%

Preamble
Principle
Mandatory Part
Bonuses

Submission and peer-evaluations




Chapter 1

Preamble

In the early days of programming, there were no real "rules" about what was clean or
not. It was a bit of a wild west!

Since then, engineers have started to think of a way to coordinate themselves to
produce code that is easier to maintain and read.

To do this, they have created their own language, called Unified Modeling Language.
This language will serve them, from this moment, to transform a software architecture
into a graph, allowing to discuss, exchange and understand much more easily what has
to be donel!




Chapter 11

Principle

UML is a graphical modeling language that allows for the visual representation of differ-
ent aspects of a software system. UML diagrams are graphical representations of these
aspects, and there are several types of UML diagrams that can be used depending on the
modeling needs.

There are multiples types of diagram, such as :

e (Class diagram

Sequence diagram

Activity diagram

State transition diagram

Use case diagram

Deployment diagram
e Etc

Each type of UML diagram has its own characteristics and is used to represent dif-
ferent aspects of a system. By using a combination of these diagrams, it is possible to
create a complete and detailed representation of a software system.

In this topic, you will be introduced to the class diagram, one of the most commonly
used in UML. It allows the representation of classes, attributes, methods, and the rela-
tionships between these elements.




PISCINE OBJECT Module 02 - UML

Classes are represented by rectangular boxes that contain the name of the class, its
attributes, and its methods.
Attributes are represented below the name of the class and methods are represented be-
low the attributes. Relationships between classes are represented by arrows.

There are several types of arrows that represent different relationships between classes,
such as, in a non-exhaustive way :

e Inheritance arrow, represented by a solid line with an arrow pointing to the parent
class.

e Implementation arrow, represented by a dotted line with an arrow pointing to the
interface. This arrow indicates that the class implements the methods defined in
the interface.

e Aggregation arrow, represented by an open diamond with an arrow pointing to the
containing class.

e Composition arrow, represented by a solid diamond with an arrow pointing to the
containing class.

Finally, it is important to note that relationships in a class diagram are generally
"downward".
This means that the parent class should be on top of the diagram, and the childrens
classes bellow, with arrow pointing upside.
This arrow convention is used to facilitate reading and understanding of the diagram.




Chapter 111

Mandatory Part

Exercise 00

Exercice 00: Car composition

Turn-in directory : ez00/

Files to turn in : subject.png

Allowed functions : None

For this exercice, you must create a diagram, as a png file, named subject.png.

This image must represent, graphicaly, the set of following objects :

The structure LinkablePart is a virtual classes, requiering to implement a method
void execute(float p_pression) to be instancied.

The structure Wheel is a class containing a method void executeRotation(float
p_force); which allows a wheel to execute a rotation with a given force.

The structure Gear is a class containing an integer variable demultiplier which
stores the demultiplier of a gear.

The structure GearLever is a class that inherits from Singleton<GearLever> con-
taining an array of Gear objects and an integer variable level. It has a method
void change(); which allows to change the current gear and a method Gearx
activeGear () ; which returns a pointer to the current active gear.

The structure Transmission is a class containing a vector of pointers to Wheel ob-
jects and a method void activate(float p_force); which activates the trans-
mission with a given force.

The structure Crankshaft is a class containing a pointer to a Transmission object
and a method void receiveForce(float p_volume); which receives a force in a
given volume.

The structure ExplosionChamber is a class containing a pointer to a Crankshaft
object and a method void fill(float p_volume); which fills the chamber with
a given volume.




PISCINE OBJECT Module 02 - UML

e The structure Injector is a class that inherits from LinkablePart containing
a pointer to an ExplosionChamber object and a method void execute(float
p_pression); which executes the injection with a given pressure

e The structure Motor is a class containing objects of type Injector, ExplosionChamber
and Crankshaft. It has a method void connectToTransmission(Transmission*
p_transmission); which connects the motor to a given transmission.

e The structure Pedal is a class containing a pointer to a LinkablePart object and
two methods: void setTarget(LinkablePart* p_part); which sets the target
of the pedal to a given part, and void use(float p_pression); which uses the
pedal with a given pressure.

e The structure Direction is a class containing an array of Wheel objects and a
method void turn(float p_angle); which turns the direction by a given angle.

e The structure DAE is a class containing a pointer to a Direction object and a float
variable force. It has a method void use(float p_angle); which uses the DAE
with a given angle.

e The structure SteerWheel is a class containing a pointer to a DAE object and
method(s) void turn(float p_angle) which takes a float as input.

e The structure Brake is a class containing a pointer to a Wheel object and method(s)
void execute(float p_force) and void attackWheel (Wheel* p_wheel) which
take a float and a pointer to a Wheel object as inputs, respectively.

e The structure BrakeController is a class that inherits from LinkablePart and
contains an array of Brake objects and method(s) void execute(float p_pression)
which takes a float as input.

e The structure Cockpit is a class containing Pedal, SteerWheel, GearLever objects
and method(s) that manage these objects.

e The structure Electronics is a class containing a DAE object.

e The structure Car is a class containing a BrakeController, Direction, Transmission,
Motor, Electronics, and Cockpit objects.




Chapter 1V

Bonuses

l Exercise 00

Bonus 00: Diagrams ameliorations

Turn-in directory : ez00/

Files to turn in : subject.png

Allowed functions : None

Several bonuses are proposed to go further in the modeling of the system.

First of all, it is proposed to modify the architecture of the system to correct any links
that could be ascending in the example. Indeed, UML generally advises to only make
descending or horizontal relationships between the different classes of a system. By mod-
ifying the architecture, it is possible to ensure that the relationships between the classes
comply with UML recommendations.

Next, it is proposed to transform the system structures into classes, and to distribute
their attributes and methods into public and private. This transformation can allow for
better modeling of the different entities in the system, and make the code more easily
understandable for developers.

It is also proposed to work on the graphical representation of the system, ensuring that
the different units are distributed in distinct blocks for better readability. It is also recom-
mended to represent association definitions (1..*, etc.) where necessary, for more precise
modeling.

Finally, one or more sequence diagrams for moving the steering, braking, acceleration
can be proposed. These diagrams allow for modeling the interactions between the dif-
ferent objects in the system in specific scenarios, and can help better understand the
functioning of the system in these situations.

Once you've completed those bonuses assignament, you're free to add any bonuses you
may think is needed.




PISCINE OBJECT Module 02 - UML

The bonus part will only be assessed if the mandatory part is
PERFECT. Perfect means the mandatory part has been integrally done
and is validated by the evaluator. If you have not passed ALL the
mandatory requirements, your bonus part will not be evaluated at all.




Chapter V

Submission and peer-evaluations

For this evaluation, you must provide any documents you may think is necessary to un-
derstand your diagram.

You won’t be evaluated on anything except what’s inside the repository.

The evaluation will mainly focus on explaination of what you've done in your diagram,
so be prepare to discuss this subject !

Turn in your assignment in your Git repository as usual. Only the work inside your
repository will be evaluated during the defense. Don’t hesitate to double check the names
of your folders and files to ensure they are correct.




	Preamble
	Principle
	Mandatory Part
	Bonuses
	Submission and peer-evaluations

