
PISCINE OBJECT
Module 01 - Relationship

Summary: This document will introduce you to another important part of Object
Oriented Programming : the object propriety.

Version: 1.00

Contents
I Preamble 2

II Introduction 3

III General rules 4

IV Exercice 00 : Putting it into practice 5
IV.1 Composition . 6
IV.2 Aggregation . 6
IV.3 Inherence . 7
IV.4 Association . 7

V Bonuses 8

VI Submission and peer-evaluation 9

1

Chapter I

Preamble

In Object Oriented Programming, objects can have relationships with one another, al-
lowing them to interact and share data. The way objects are related to one another can
be categorized into different types based on the degree of their dependence and ownership.

For example, there is a relationship where one object is made up of other objects,
with the contained objects being necessary for the functionality of the main object. This
relationship represents the strong bond between objects and the reliance of one object on
the other.

Another type of relationship exists where objects have a loose connection, and one
object can function independently without the other. This relationship represents the
loose coupling between objects.

Finally, there is a relationship where objects have a common responsibility, but neither
object is dependent on the other. This relationship represents a collaboration between
objects.

2

Chapter II

Introduction

In the following example, we will use a computer system as an object to illustrate different
relationships in object-oriented programming. By using a computer system as an object,
we can see how these relationships can be applied to real-world situations and help to
organize, maintain, and extend code.

The central processing unit (CPU) and the screen are objects that can have a loose
relationship with one another, meaning that the screen is a separate object but can be
associated with the computer and contribute to its functionality. The screen can exist
independently, but when associated with the computer it helps to enhance its display
capabilities.

On the other hand, the CPU and the graphics processing unit (GPU) can have a
strong relationship, where the GPU is part of the computer and cannot exist without
it. The computer can be seen as the main object and the GPU as a contained object,
necessary for the computer’s functionality.

In addition, the computer and the printer objects can have an relationship, where
the computer and the printer have a common responsibility of printing documents, but
neither object is dependent on the other. The computer can print to any printer that is
connected, and the printer can receive print jobs from any computer. The two objects
collaborate to perform the task of printing, but they can function independently as well.

Finaly, the central processing unit is the parent class and the processor object is the
child class. The processor object inherits the properties and behaviors of the CPU class,
such as the clock speed and number of cores. However, the processor object also special-
izes the properties and behaviors of the CPU by adding specific information such as the
make and model of the processor.

You will find in this module 4 exercices, related to this subject !
Try to guess what name correspond to what kind of relationship !

3

Chapter III

General rules

• Your program should not crash in any circumstances (even when it runs out of
memory), and should not quit unexpectedly.
If it happens, your project will be considered non-functional and your grade will be
0.

• You have to turn in a Makefile which will compile your source files. It must not
relink.

• Your Makefile must at least contain the rules:
$(NAME), all, clean, fclean and re.

• Compile your code with c++ and the flags -Wall -Wextra -Werror

• Your code must comply with the C++ 98 standard. Then, it should still compile
if you add the flag -std=c++98.

• Try to always develop using the most C++ features you can (for example, choose
<cstring> over <string.h>). You are allowed to use C functions, but always prefer
their C++ versions if possible.

• Any external library and Boost libraries are forbidden.

4

Chapter IV

Exercice 00 : Putting it into practice

Exercise 00

Exercice 00 : Putting it into practice
Turn-in directory : ex00/

Files to turn in : ex00/*.cpp, ex00/*.hpp, ex00/main.cpp, Makefile
Allowed functions : standard STD containers and structure

We can only strongly recommend that you read the preamble and the introduction,
you may find some really useful knowledge there.

During the evaluation, you will be asked questions about specific terms in Object
Oriented programming, so feel free to search on the internet for definition, and try to
made them yours !

As we’re here to evaluate architecture and code planning, you’re allowed to place
method’s code directly inside header files, but feel free to create .cpp if you think it’s
clearer to separate it from declaration.

Note that we expect you to place some output in pretty much every function, method,
constructor, operator and destructor you will create in this module.

Those output will be used during evaluation to locate where your code goes, and see
what it does, and in what order.

So place some output everywhere you find it necessary !

5

PISCINE OBJECT Module 01 - Relationship

IV.1 Composition
In this section, you must create the following structures:

• A structure Position, having a int x, a int y, and a int z.

• A structure Statistic, having two attributes: int level and int exp.

• A class Worker, which must contain a Position coordonnee and a Statistic stat.

The worker must have the Position and Statistic as composition.

Be ready to be asked during the evaluation about what does this
sentence mean

IV.2 Aggregation
You must add a class Shovel with a method use. The Shovel must be able to be given
to a Worker and then taken away if necessary.
In case of deletion of the Worker, the Shovel must not be destroyed.

You must perform the following tasks:

• Create a structure Shovel, with an attribute numberOfUses.

• Modify the class Worker to add a Shovel object, in a way that allows it to be given
and taken away.

• Ensure that the Shovel is not deleted in case of deletion of the Worker object.

• Ensure that, if the tool is already given to a worker, giving it to another worker
does remove it from the first

6

PISCINE OBJECT Module 01 - Relationship

IV.3 Inherence
You must add an abstract class Tool with a pure virtual method use. The Shovel must
inherit from Tool. You must also create another class Hammer, which also inherits from
Tool.
Each tool must have a number of uses and a use method that indicates what tool it is.
The Worker must now be able to have multiple tools simultaneously and be able to return
them.

You must perform the following tasks:

• Create an abstract class Tool.

• Make the class Shovel inherit from Tool.

• Create a class Hammer that inherits from Tool.

• Ensure that tools can be given to a Worker and taken away.

• Ensure that, if the tool is already given to a worker, giving it to another worker
does remove it from the first

IV.4 Association
You must create a Workshop class that has a list of Workers who can work in the Work-
shop. The Workshop class must have a way for Workers to sign up for the workshop’s
worker list and be able to leave it freely.

You are tasked with the following:

1. Create a class Workshop

2. Allow the Workshop class to register Workers and release them if requested

3. Allow Workers to register at multiple Workshops simultaneously

4. The Worker class should have a method "work", to execute work if he’s registred to
a workshop.

5. The Workshop should have a method "executeWorkDay", launching the day for
every Worker registred inside it.

7

Chapter V

Bonuses

We propose the following bonuses :

• Create a GetTool<ToolType>() method in the Worker class to get the first tool of
the right type, or nullptr otherwise.

• Make sure that each workshop only accepts workers with a specific tool. If a worker
registers but does not have the necessary tool, he should not join the workshop.

• Also, if a worker loses his tool, he should be automatically released from the work-
shop he’s working on.

The bonus part will only be assessed if the mandatory part is
PERFECT. Perfect means the mandatory part has been integrally done
and works without malfunctioning. If you have not passed ALL the
mandatory requirements, your bonus part will not be evaluated at all.

8

Chapter VI

Submission and peer-evaluation

For this evaluation, there will be verification that you have correctly encapsulate the
classes, and there will also be verification about what kind of relationship you have cre-
ated between structures. There will be also questions about general definition, to check
if you have understund the basics principles.

The idea is to force you to THINK of what you do, and not simply follow rules without
fully understanding why there are here.

Turn in your assignment in your Git repository as usual. Only the work inside your
repository will be evaluated during the defense. Don’t hesitate to double check the names
of your folders and files to ensure they are correct.

9

	Preamble
	Introduction
	General rules
	Exercice 00 : Putting it into practice
	Composition
	Aggregation
	Inherence
	Association

	Bonuses
	Submission and peer-evaluation

