PISCINE OBJECT
Module 03 - SOLID

Summary: This document will introduce you to the five SOLID principles.

Version: 1.00




Contents

11

111

v

VI

VII

VIII

Preamble

Introduction

[S]olid - Single responsability
s[O]lid - Opened/Closed
so[L]id - Liskov substitution
sol[I]d - Interface segregation
soli[D] - Dependency inversion

Submission and peer-evaluation

10

12




Chapter 1

Preamble

The development of object-oriented programming began in the 1960s, but it wasn’t until
the 1990s that the concept really began to take hold in the software development industry.
As the complexity of applications and systems increased, developers began to realise that
it was important to create software that could evolve over time without becoming too
difficult to maintain.

It was in this context that the SOLID principles were developed. They were proposed by
Robert C. Martin, a software developer and computer consultant, also known as "Uncle
Bob". The principles were formulated to help programmers create software that was
easier to modify, maintain and reuse.




Chapter 11

Introduction

We saw in the previous chapter that SOLID is a set of rules, or rather guidelines, that
allow you to produce code that is easier to read, understand and maintain.

Each letter in the word SOLID refers to a specific rule, the meaning of which you will
explore in this module :

e [Slingle Responsibility Principle
e [O]pen/Closed Principle

[L]iskov Substitution Principle

[I]nterface Segregation Principle

e [Dl]ependency Inversion Principle

By following these principles, developers can create more flexible and modular soft-
ware. It also reduces the coupling between different parts of the software, making it
easier to maintain and evolve the code. The SOLID principles are therefore an essential
tool for programmers who want to create high-quality, scalable and maintainable software.

To ease your time over this modules, we allow you to place methods bodies directly
inside the header file, to allow you to focus mainly on what you're doing in term of ar-

chitecture, and not passing too much time swapping from one file to another.

But that’s only on this module ! So enjoy it while it last !




Chapter 111

[S]olid - Single responsability

I Exercise 00
14

Exercice 00: [S]olid - Single responsability

Turn-in directory : ex00/

Files to turn in : car.hpp, *.hpp, main.cpp

Allowed functions : None

You must create a Car class that can perform the following list of actions:

e start(): starts the engine

e stop(): stops the engine and applies the brakes

e accelerate(speed): increases the speed of the car by a specified value
e shift_gears_up(): shifts up to the next gear

e shift gears_down(): shifts down to the previous gear

e reverse(): puts the transmission in reverse gear

e turn_wheel(angle): turns the wheels by a specified angle

e straighten wheels(): returns the wheels to a straight-ahead position
e apply_force_on_brakes(force): applies a specified force to the brakes

e apply_emergency_brakes(): applies the brakes with maximum force for an emer-
gency stop

You're required to provide a main.cpp file, showing how your code work.

You must follow the single responsability rule from SOLID to perform this exercice.
During the evaluation, you will be interviewed on how and why you designed your class
the way you will have compose it. You're allow to add any necessary file in this exercice
repository.




Chapter 1V
s|O]lid - Opened/Closed

I Exercise 01
14

Exercice 01: s[O]lid - Opened/Closed
Turn-in directory : ex01/

Files to turn in : command.hpp, thuesdayDiscount.hpp,
packageReductionDiscount.hpp, main.cpp
Allowed functions : None

You must create a Command class to represent an order with the following attributes:
e id: the order ID
e date: the order date
e client: the client who placed the order
e articles: the articles ordered with their quantities
The class Command must contain the following methods :
e get_total price() : a method to compute the price of the command
You are requested to create 2 differents discount commands :

e A class ThuesdayDiscountCommand, inheriting from Command

This class must apply a discount of 10 percents of every command executed on a
Thuesday

e A class PackageReductionDiscountCommand, inheriting from Command

This class must apply a discount of 10 euro if the total command value exceed 150
euros

You're required to provide a main.cpp file, showing how your code work.
You must follow the Opened/Closed rule from SOLID to perform this exercice.




PISCINE OBJECT Module 03 - SOLID

You’re obviously not allowed to edit the Command class to perform the

10 percent or the fixed value discount




Chapter V

so[L]id - Liskov substitution

I Exercise 02
14

Exercice 02: so[L]id - Liskov substitution

Turn-in directory : ex02/

Files to turn in : shape.hpp, rectangle.hpp, circle.hpp, triangle.hpp,
main.cpp

Allowed functions : None

You must create a base Shape class with virtual methods for calculating the area and
perimeter of a shape, and you must also create three derived classes, Rectangle, Triangle
and Circle, that inherit from Shape and provide their own implementations of the ab-
stracts methods.

In order to satisfy the Liskov substitution principle, you should ensure that any code
that expects an object of type Shape can work correctly with any object of a derived type,
without knowing or caring about the specific type of the object. This means that the
derived class should be able to replace the Shape class in any context without introducing
errors or unexpected behavior.

You're required to provide a main.cpp file, showing how your code work.




Chapter VI

sol[I]d - Interface segregation

I Exercise 03
14

Exercice 03: sol[I]d - Interface segregation
Turn-in directory : ex03/

Files to turn in : employeeManagement.hpp, employee.hpp, hourlyEmployee.hpp,
salariedEmployee.hpp, main.cpp

Allowed functions : None

In this exercice, you're required to create a class EmployeeManager, that will manage
a set of Employee.

The EmployeeManager class must contain the following methods :
e void addEmployee(Employee*)
e void removeEmployee(Employee*)

e void executeWorkday/()

This method must execute a single day of work for each of the registered worker.
One day equal 7 hours of work.

e void calculatePayroll()

This method must output in the console the amount of money to give to each of
the subscribed workers, over the last complete month.

The Employee class must contain the following attributes/methods:
Attributes:

e int hourlyValue
Methods:

e int executeWorkday ()




PISCINE OBJECT Module 03 - SOLID

You must now create the following 3 new Employee derived classes :
e class TempWorker
e class ContractEmployee

e class Apprentice

The idea is quite simple :

e The TempWorker is a class who must register every work hour it will do. It is also
need a way to mobilise it over a certain period of time, in hour.

e The ContractEmployee, on the other hand, must register the hour it will NOT do
(Vacantion, sickness, any reason).

e The Apprentice, at last, must register the hour it will NOT work, just as the
ContractEmployee, but it must also log every hour where it will go to school. The
Apprentice need a way to indicate how many hours of school he will do before going
back to work. Those hours passed at school will be payed half the hourly value.

You're allowed to edit the base Employee class, if you may think it’s necessary. You will
have to explain such edition during evaluation.

Use the Liskov substitution principle previously saw to ensure that each implementation
of employee management can be used interchangeably with the generic employee man-
agement interface.

Use the interface segregation principle to avoid forcing client classes of the generic inter-
face to depend on methods that do not concern them.

You're required to provide a main.cpp file, showing how your code work.




Chapter VII

soli|D] - Dependency inversion

I Exercise 04

Exercice 04: soli|D] - Dependency inversion

Turn-in directory : ex04/

Files to turn in : ILogger.hpp, *.hpp, main.cpp

Allowed functions : None

In this exercice, you have to create a system of log file/output.

You must create the ILogger class, with at least a method virtual void write(std::string)
=0

You're also required to create some derived classes, following the requirements:
e a Logger that will write the string onto a file fully managed by the logger.
e a Logger that will write the string onto a std::ostream given to the logger.

e both those type of loggers can have a text header in front of any string. The header
can be :

o a constant string.

o a date describing when the message is outputed.

Loggers CAN have a header. It’s not mandatory. So do not force it

% onto ILogger derived classes that do not need it.

As test, you will create a std::vector<ILogger*> containing every kind of logger you
may have created, in parallel of a list of string to log. Your main must iterate thought
th list of string, and force every logger to output each string, to check if all your logger
work correctly.

10




PISCINE OBJECT Module 03 - SOLID

You’re not authorized to add anything inside the [Logger, as it must remain a strict
interface.
You must remember what you learn thought the interface segregation exercice.

Does the constant string header need to know how to get the date 7

% Does the non-header logger need to know how to print a header 7

You're required to provide a main.cpp file, showing how your code work.
You must follow the dependency inversion principle to perform this exercice.

11




Chapter VIII

Submission and peer-evaluation

The idea is to force you to THINK of what you do, and not simply follow rules without
fully understanding why there are here.

Turn in your assignment in your Git repository as usual. Only the work inside your
repository will be evaluated during the defense. Don’t hesitate to double check the names
of your folders and files to ensure they are correct.

12




	Preamble
	Introduction
	[S]olid - Single responsability
	s[O]lid - Opened/Closed
	so[L]id - Liskov substitution
	sol[I]d - Interface segregation
	soli[D] - Dependency inversion
	Submission and peer-evaluation

